Projections of low spontaneous rate, high threshold auditory nerve fibers to the small cell cap of the cochlear nucleus in cats.
نویسنده
چکیده
The marginal shell of the anteroventral cochlear nucleus houses small cells that are distinct from the overlying microneurons of the granule cell domain and the underlying projection neurons of the magnocellular core. This thin shell of small cells and associated neuropil receives auditory nerve input from only the low (<18 spikes/s) spontaneous rate (SR), high threshold auditory nerve fibers; high SR, low threshold fibers do not project there. It should be noted, that most of these auditory nerve terminations reside in the neuropil and intermix with dendrites that originate outside the shell. Consequently, electron microscopy is necessary to determine the synaptic targets. For this report, the terminations of intracellularly labeled low SR auditory nerve fibers in the small cell of cats cap were mapped through serial sections using a light microscope. The terminals were then examined with an electron microscope and found to form synapses with the somata and dendrites of small cells. Moreover, the small cell dendrites were identifiable by an abundance of microtubules and the presence of polyribosomes that were free or associated with membranous cisterns. These data contribute to the concept of a high threshold feedback circuit to the inner ear, and reveal translational machinery for local control of activity-dependent synaptic modification.
منابع مشابه
Contribution of auditory nerve fibers to compound action potential of the auditory nerve.
Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then...
متن کاملSingle unit recordings in the auditory nerve of congenitally deaf white cats: morphological correlates in the cochlea and cochlear nucleus.
It is well known that experimentally induced cochlear damage produces structural, physiological, and biochemical alterations in neurons of the cochlear nucleus. In contrast, much less is known with respect to the naturally occurring cochlear pathology presented by congenital deafness. The present study attempts to relate organ of Corti structure and auditory nerve activity to the morphology of ...
متن کاملVowel representations in the ventral cochlear nucleus of the cat: effects of level, background noise, and behavioral state.
Single-unit responses were studied in the ventral cochlear nucleus (VCN) of cats as formant and trough features of the vowel /epsilon/ were shifted in the frequency domain to each unit's best frequency (BF; the frequency of greatest sensitivity). Discharge rates sampled with this spectrum manipulation procedure (SMP) were used to estimate vowel representations provided by populations of VCN neu...
متن کاملDetection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus.
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory ...
متن کاملDorsal cochlear nucleus response properties following acoustic trauma: response maps and spontaneous activity.
Recordings from single neurons in the dorsal cochlear nucleus (DCN) of unanesthetized (decerebrate) cats were done to characterize the effects of acoustic trauma. Trauma was produced by a 250 Hz band of noise centered at 10 kHz, presented at 105-120 dB SPL for 4h. After a one-month recovery period, neurons were recorded in the DCN. The threshold shift, determined from compound action-potential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 154 1 شماره
صفحات -
تاریخ انتشار 2008